Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Type of study
Language
Document Type
Year range
1.
J Pediatr Genet ; 11(2): 154-157, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1978057

ABSTRACT

Inherited diarrheal disorders cause serious morbidity resulting in dependence on intensive care and parenteral nutrition. Microvillus inclusion disease (MVID) has been classically described and results from mutations in the gene coding myosin Vb, which is responsible for enterocyte polarization. Newer reports of mutations resulting in truncated syntaxin 3 (STX3) and Munc18-2 (STXBP2) proteins have been elucidated as causative. To date, five cases of STX3 abnormalities resulting in MVID have been described. We report an infant who presented with congenital diarrhea and was determined to have a rare mutation of STX3. This new finding would be beneficial in future functional genotype-phenotype correlation studies.

2.
Topics in Antiviral Medicine ; 30(1 SUPPL):67, 2022.
Article in English | EMBASE | ID: covidwho-1880292

ABSTRACT

Background: Human immunodeficiency virus (HIV) and Influenza A virus (IAV) remain a global health concern. Further, emergence of novel coronavirus SARS-CoV-2, which rapidly became global pandemic, increases the concern in biomedical research field for antiviral treatment. To develop new antiviral therapy, we must need to understand the molecular and cellular mechanisms involved in assembly and replication. It is known for some viruses (HIV and IAV) that the host actin cytoskeleton has been involved in various stages of the virus life cycle. Regulation of actin cytoskeleton requires several actin binding proteins, which organize the actin filaments (F-actin) into higher order structures such as actin bundles, branches, filopodia and microvilli, for further assistance in viral particle production. Thus, our objective for this work is to understand the role of these actin regulator proteins, like cofilin and one of its cofactor WDR1, in viral particle assembly and release. Methods: Here we used a combination of different experimental methods like RNA interference, immunoblot, immunoprecipitation, immunofluorescence coupled to confocal and STED fluorescence microscopy. In order to study only virus release, and bypass viral entry, we set up a minimal system for virus-like particles production in transfected cells, giving HIV-1 Gag-VLP, Influenza M1-VLP and SARS-CoV-2 MNE-VLP (developed by D. Muriaux lab). For image analysis, we used Image J software. Statistical analysis was performed with non-parametric t-tests or one-way Anova test. Results: Using siRNA strategy, we have shown that upon knock down of actin protein cofilin or WDR1, HIV-1 and IAV particles production increases in contrario to SARS-CoV-2 VLP release. Further, using immunoprecipitation, we report that HIV-1 Gag is able to form an intracellular complex with WDR1 and cofilin. Similarly, IAV-M1, which like HIV Gag-MA binds with plasma membrane phospholipids, is able to form an intracellular complex with cofilin. These results suggested that virus budding from the host cell plasma membrane seemed restricted by the cofilin/WDR1 complex. Finally, using confocal/STED microscopy on cell producing VLP, we observed actin fibers rearrangement with cell protrusions, suggesting a role for actin in viral particles assembly and release. Conclusion: In conclusion, regulators of actin dynamic are involved in HIV-1 Gag, IAV-M1 and SARS-CoV-2 VLP production but play a differential role in assembly and release of these RNA enveloped viruses.

SELECTION OF CITATIONS
SEARCH DETAIL